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Abstract

This paper describes the formulation of a model of the
dynamic behavior of the Benchmark Active Controls
Technology (BACT) wind-tunnel model for
application to design and analysis of flutter
suppression controllers.  The model is formed by
combining the equations of motion for the BACT
wind-tunnel model with actuator models and a model
of wind-tunnel turbulence.  The primary focus of this
paper is the development of the equations of motion
from first principles using Lagrange’s equations and
the principle of virtual work.  A numerical form of
the model is generated using values for parameters
obtained from both experiment and analysis.  A
unique aspect of the BACT wind-tunnel model is that
it has upper- and lower-surface spoilers for active
control. Comparisons with experimental frequency
responses and other data show excellent agreement and
suggest that simple coefficient-based aerodynamics are
sufficient to accurately characterize the aeroelastic
response of the BACT wind-tunnel model.  The
equations of motion developed herein have been used
to assist the design and analysis of a number of flutter
suppression controllers that have been successfully
implemented.  

Introduction

Active control of aeroelastic phenomena, especially
in the transonic speed regime, is a key technology for
future aircraft design.[1]  The Benchmark Active
Controls Technology (BACT) project is part of NASA
Langley Research Center’s Benchmark Models
Program[1,2] for studying transonic aeroelastic
phenomena.  The BACT wind-tunnel model was
developed to collect high quality unsteady aerodynamic
data (pressures and loads) near transonic flutter
conditions and demonstrate flutter suppression using
spoilers.  Accomplishing these objectives required the
design and implementation of active flutter
suppression.  The multiple control surfaces and sensors
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on the BACT enabled the investigation of
multivariable flutter suppression. And the availability
of truly multivariable control laws provides an
opportunity to evaluate the effectiveness of a
controller performance evaluation (CPE) tool[3] used
to assess open- and closed-loop stability and
controller robustness when applied to multivariable
systems.  An underlying requirement of all these
objectives is the availability of a mathematical model
of the BACT dynamics.

A mathematical model is the basis for nearly all
control design methods, therefore an appropriate model
is essential.  The importance of having a good model
of the dynamic behavior cannot be overstated and the
model must be developed with a mind toward the needs
of control law design.  In addition, appropriate models
are required to accurately assess system performance
and robustness.  Extensive analysis and simulation are
usually required before controller implementation to
assure that safety is not compromised.  This is
especially true in the area of aeroservoelastic testing in
which failure can result in destruction of the wind-
tunnel model and damage to the wind-tunnel.

Mathematical models for control law synthesis must
characterize the salient dynamic properties of the
system.  One of the most important properties to
accurately model is the frequency response in the
vicinity of the key dynamics over the anticipated range
of operating conditions.  In the case of flutter
suppression, the key dynamics occur near the flutter
frequency and the operating conditions correspond to a
wide range of dynamic pressures and Mach numbers
representing both stable and unstable conditions.  Also
important are the key parametric variations associated
with the system and the uncertainties associated with
the assumptions and limitations of the analysis tools
and other data used to build the model.

The development of the model of the dynamic
behavior of the BACT presented herein was motivated
by several factors.  A primary motivation was based on
the fact that the tool normally used at NASA Langley
to model aeroelastic systems, ISAC[4], is unable to
model spoilers.  Since the demonstration of flutter
suppression using spoilers was a key objective of the
BACT project an alternative modeling approach was
needed.  Another motivation for the particular
modeling approach taken here was the desire to assess
the impact of model uncertainty and parametric
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variations on control system design, performance, and
robustness.  

By developing the model from first principles using
appropriate idealizations of the structural and
aerodynamic characteristics, a model was developed that
includes spoiler controls and explicitly contains the
key physical parameters.  The analytical and parametric
nature of the model also provides physical insights not
readily obtained from purely numerical models (such as
those produced by ISAC and similar tools).  While this
paper emphasizes the development of the equations of
motion of the BACT wind-tunnel model, a complete
model is presented including actuator and turbulence
models, and validation of the resulting numerical
model.

The BACT Wind-Tunnel Model

The BACT wind-tunnel model is a rigid,
rectangular, wing with an NACA 0012 airfoil
section.[5]  A drawing of the model is shown in
Figure 1.  It is equipped with a trailing-edge control
surface, and upper- and lower-surface spoilers that can
be controlled independently via hydraulic actuators.
The wind-tunnel model is instrumented with pressure
transducers, accelerometers, control surface position
sensors, and hydraulic pressure transducers.  The
accelerometers are the primary sensors for feedback
control and are located at each corner of the wing.

The wing is mounted to a device called the Pitch and
Plunge Apparatus[5] (PAPA) which is designed to
permit motion in principally two modes -- rotation (or
pitch), and vertical translation (or plunge).  A drawing
of the PAPA is shown in Figure 2.  The mass,
inertia, and center of gravity location of the system can
be controlled by locating masses at various points
along the mounting bracket.  The stiffness properties
can be controlled by changing the properties of the
rods.  The PAPA is instrumented with strain gauges to
measure normal force and pitching moment and is
mounted to a turntable that can be rotated to control
the wing angle of attack.

The combination of the BACT wing section and
PAPA mount will be referred to as the BACT system.
The BACT system was precisely tuned to flutter
within the operating range of the Transonic Dynamics
Tunnel (TDT)[6] at NASA Langley Research Center in
which the system was tested.  The range of Mach
numbers and dynamic pressures over which flutter
occurs permits the study of transonic aeroelastic
phenomena.  More detailed descriptions of both the
BACT wing section and the PAPA mounting system
can be found in References 5 and 7.

The BACT system has dynamic behavior very
similar to the classical two degree-of-freedom (2-DOF)
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problem in aeroelasticity.[8]  The difference is
primarily the complexity of aerodynamic behavior and
presence of additional structural modes.  The finite
span and low aspect ratio of the BACT wing
introduce significant three dimensional flow effects.
Higher frequency structural degrees of freedom are
associated with the PAPA mount and the fact that the
wing section is not truly rigid.

The control surfaces also introduce complexities not
typically reflected in the classical 2-DOF system.  The
mass and inertia of the control surfaces and potential
flexibility in their support structures introduce inertial
coupling effects.  The finite span of the control
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surfaces and their close proximity to each other also
introduce significant aerodynamic effects.  All these
issues influence the development of the equations of
motion but, as will be seen, do not force the
abandonment of the 2-DOF system structure.

Aeroelastic Equations of Motion

Lagrange’s equations were used to derive the
equations of motion for the BACT system and the
principle of virtual work was used to obtain
expressions for viscous damping and the generalized
aerodynamic forces.  Lagrange’s equations and the
principle of virtual work provide a simple and straight
forward method for deriving the equations of motion
for aeroelastic systems.[9]   Lagrange’s equations
readily allow one to represent motions relative to a
moving frame.  The principle of virtual work has the
advantage of automatically accounting for the forces of
constraint and thereby greatly simplifying the
determination of generalized forces.

The basic requirement for applying Lagrange’s
equations is that the velocity of each point in the body
be represented in an inertial frame.  The efficient
application of Lagrange’s equations can be facilitated
by representing the inertial quantities in convenient
coordinate systems and selecting an appropriate set of
generalized coordinates.

    Coordinate Axes and Generalized Coord      i      nates

The BACT system can be idealized as a collection of
four rigid bodies corresponding to each of the three
control surfaces and the remaining wing/PAPA
element.  Figure 4 depicts the relevant quantities for
the wing and the trailing edge control surface.  The
spoiler control surfaces were treated in an analogous
fashion but are omitted here for ease of discussion.

There were essentially five coordinate systems used.
One coordinate system is fixed to the wing, moving
with it.  Another coordinate system is fixed in inertial
space and oriented relative to the turntable to which the
BACT system was mounted.  It was chosen to coincide
with the undeformed position of the body-fixed system.
The three others are fixed to each of the control
surfaces and rotated relative to the body-fixed system
about the hinge of each surface.

The origin of the inertial coordinate axes is located
at the shear center of the undeformed position. The
origin of the body fixed coordinate axes coincides with
the instantaneous shear center of the system.  The
origin of the control surface-fixed coordinate axes
coincide with the hinge lines.

The generalized coordinates were selected to simplify
the derivation of the equations of motion.  Their
selection is based on some key assumptions about the
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Figure 4 - Structural representation showing trailing
edge control only.

nature of the motion of the BACT system.  The wing
section and each control surface are assumed to be
rigid in both the spanwise and chordwise directions.
This assumption is supported by the fact that the
wing and control surfaces were constructed to be as
rigid as possible.  

It is also assumed that the motion is limited to two
degrees of freedom -- pitch and plunge.  This
assumption implies that the other structural modes of
the BACT system are insignificant.  Investigation of
the structural vibration characteristics of the PAPA
mount with a very similar wing model was shown to
support this assumption.[10]  The next lowest
frequency for any transverse mode was more than six
times the frequency of the pitch and plunge modes and
well outside the frequency range of interest.  

Based on these assumptions the BACT requires five
generalized coordinates, two associated with the pitch
and plunge degrees of freedom of the entire wing and
three are associated with the angular rotation of the
control surfaces.  The five generalized coordinates
therefore are pitch angle, θ, and plunge displacement,
h, of the body fixed coordinate axes relative to the
inertial coordinate axes and the trailing edge, upper-,
and lower-spoiler control surface angles, δTE, δUS, and

δLS, respectively.  The three coordinates, h, θ, and

δ δ≡ TE, for the system including only the trailing

edge control surface are depicted in Figure 4.
The relation between the generalized coordinates and

the angle of attack of the wind-tunnel model will be
important in formulating the generalized aerodynamic
forces later.  Based on the choice of the generalized
coordinates the following expression can be used to
determine the angle-of-attack.
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where θT is the turntable angle,   l( )x  is the distance

from the origin of body fixed coordinate system to the
angle of attack reference, x  (positive aft), wg is the

normal perturbation velocity of the local flow field
(positive down relative to the free stream flow), and
U0 is the freestream velocity.

    Kinetic and Potential Energy

The selection of the generalized coordinates allows
expressions for the kinetic and potential energies to be
formulated.  The kinetic energy of the BACT system is
the sum of the kinetic energy of the wing and the three
control surfaces.

The kinetic energy of a body is the work required to
increase its velocity from rest to some value relative to
an inertial frame.  Using the quantities defined in
Figure 4 the kinetic energy expression for the BACT
system including only the trailing edge control can be
written
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The potential energy of a rigid body consists of two
terms, the strain energy and the gravitational potential
energy.  The gravitational potential is defined relative
to a datum, usually the origin of the inertial reference
frame.  Using the quantities defined in Figure 4 and
assuming the datum to be the origin of the inertial
frame the gravitational potential for the BACT system
is
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where g  is the gravitational acceleration.
The strain energy is the work done in going from

the undeformed reference position to the deformed
position.   Using the quantities defined in Figure 4 the
strain energy for the BACT system is
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where Kh  and Kθ  are the spring constants associated

with the stiffness properties of the PAPA mount and
where Kδ  is the spring constant representing the

flexibility in the structure supporting the actuator.
Note that the strain energy associated with the control
surface is based on the difference between the

commanded and the actual control surface rotation, δc
and δ , respectively.

The total potential energy for the BACT system is
simply the sum of the gravitational potential and the
strain energy, Eqns (3) and (4), respectively.

    Applying Lagrange’s Equations

Lagrange’s equations can be expressed in the
following form.

d
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where the T  and U  are the kinetic and potential
energy of the system, respectively, qi  is the ith
generalized coordinate, and Qqi

is the generalized force

associated with qi  and includes externally applied

forces, nonconservative forces, and forces of
constraint.  

Applying the expressions for the kinetic and
potential energies to Eqn (5) results in the following
system of equations.
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The terms m, Iθ, and Iδ are the generalized masses of

the pitch, plunge, and control surface modes,
respectively.  The terms shθ, shδ, and sθδ are the

inertial coupling between the various degrees-of-
freedom.  These terms are related to the quantities
defined in Figure 4 by the following relations.

m m m s m e m e

I I I m e m e s m e

I I m e s I m e e

h

h

≡ + ≡ +
≡ + + + ≡

≡ + ≡ +

1 2 1 1 2 2

1 2 1 1
2

2 2
2

2

2 2 2
2

2 2 2

θ
θ δ δ

δ θδ δ

(7)

If one assumes that the control surface stiffness is
very large, (i.e., the deformation due to hinge load is
insignificant) then Eqn (6) can be simplified by
eliminating the generalized force associated with the
control surface, Qδ.  

Assume that the control surface stiffness is very
large so that

Kδ ε
ε≈ <<

1
1,

Eqn (6) can now be approximated by the following
equations after eliminating terms of order ε.
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Note that the value of θ has been assumed to be small
so that cosθ is approximately unity.  Also note that
the inertial coupling between the wing structure and
the control surface is retained in the equations.

All that remains to complete the equations of
motion is to determine expressions for the generalized
forces, Qh and Qθ .

    Applying the Principle of Virtual Work

The principle of virtual work can be applied to
obtain expressions for generalized forces.  The basic
advantage of using this method is that the forces of
constraint are eliminated automatically.  In addition,
the principle of virtual work can be used to determine
expressions for dissipative forces such as damping.

The generalized force, Qqi
, can be determined from

the following equation.
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where δW  is the work done on the system by an
arbitrary infinitesimal (or virtual) displacement of the
generalized coordinates.   This virtual work includes
the work done by nonconservative forces (e.g.,
damping) and external forces.  The work done by
forces of constraint are zero under virtual
displacements.

    Nonconservative (Damping) Forces

Structural damping is often characterized as a
viscous force.  Experimental data suggests that this is
a reasonable assumption for the BACT system
undergoing small motions.  Viscous forces are those
where the force varies in proportion to the velocity at
the point the force is applied but in the opposite
direction.  The following expression was derived to
represent the generalized damping forces for the BACT.
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The constant terms in Eqn (11) were chosen so that
the damping coefficients associated with the plunge and
pitch modes, ζh  and ζθ , respectively, correspond to

those obtained from experiment.  The matrix
premultiplying the diagonal damping matrix is the

mass matrix from Eqn (9).  The other constants, ωh
and ωθ , correspond to the in vacuo vibration

frequencies for the pitch and plunge modes.

    External (Aerodynamic) Forces

The externally applied forces are due to
aerodynamics and result from the distributed pressures
applied to the surface of the BACT wing.  For the
wing the virtual work can be written
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where b is the wing semi-span, c is the section chord,
p(x,y,t) is the differential pressure distribution over
the surface of the wing, and δz(x,y,t) is a virtual
displacement normal to the wing surface.  Figure 5
depicts the pressure distribution for a chordwise
section.

The virtual displacement can be written in terms of
virtual displacements of the generalized coordinates h,
θ, and δ  as follows.
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Substituting this expression in Eqn (12) and
performing the differentiation described in Eqn (10)
results in the following expressions for the
generalized aerodynamic forces.
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Figure 5 - Pressure distribution over wing section.
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Where L , M p, and Hδ are the lift, pitching moment
about the reference point, xp, and the control surface

moment about its hinge-line, respectively.  The
reference point, xp, was chosen to correspond to the

shear center (i.e., the origin of the body fixed
coordinate system).

There are several ways in which the integrated
surface pressures can be approximated in practice.  If
computational aerodynamic analysis results are
available the integration can be approximated by using
the pressures on the computational grid.  If
experimental force and moment data are available it can
be used directly allowing for potential differences in the
moment reference point.

A common method of approximating the
aerodynamic forces is to use stability and control
derivatives.  The aerodynamic forces are represented as
a linear function of angle-of-attack and control surface
deflection and their rates as shown in Eqns (15) and
(16).  Descriptions of each coefficient are presented
below in Table 2.  A comparable expression for the
hinge moment has been omitted since the need for the
generalized force associated with hinge moment in the
equations of motion was eliminated in Eqn (9).

L qSC

qS C C C

c

U
C C C

L

L L L

L L Lq

=

= + +[
+ + +










0

2 0

α δ

α δ

α δ

α θ δ˙ ˙
˙ ˙ ˙

(15)

M qScC

qSc C C C

c

U
C C C

p M

M M M

M M Mq

=

= + +[
+ + +










0

2 0

α δ

α δ

α δ

α θ δ˙ ˙
˙ ˙ ˙

(16)

The coefficient-based approach is a rather simplistic
way to represent the aerodynamic forces and moments,
but it is quite acceptable for the BACT system as will
be seen.  The need to include more sophisticated
aerodynamic modeling approaches such as rational
function approximations or time accurate CFD is
mitigated by the fact that the reduced frequency for the
BACT system is relatively low, approximately 0.044.

Using the expression for angle-of-attack from
Eqn (1) in Eqns (15) and (16) the expression for the
generalized applied external forces in Eqn (17) can be
obtained.
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    Complete BACT Equations of Motion

Combining the generalized forces, Eqns (11) and
(17), with Eqn (9) results in the complete equations of
motion for the BACT system.  The general form of the
equations can be expressed as

M M q D D q K K q

Q Q M g

B B B Ew

s a s a s a

e
T T g T

−( ) + −( ) + −( )
= + +

+ + + +

˙̇ ˙

cos

˙̇ ˙

0

2 1 0

θ θ

δ δ δ

(18)

where q is the vector of generalized coordinates, w is
the vector of disturbance inputs, and the definitions of
the other symbols can be readily determined by
comparison with Eqns (9), (11), and (17).

Notice that the effect of the aerodynamic forces is to
modify the mass, damping, and stiffness properties of
the system.  It is this aerodynamic coupling that is the
essential feature of aeroelastic systems and leads to the
flutter instability.

Also note that there are three terms in the equations
that are constant, assuming the turntable angle is fixed.
These terms determine the static equilibrium of the
system.

    Equilibrium Solution and Perturb      a      tion Equations

The static equilibrium of the BACT system is
obtained by setting all time derivatives in Eqn (18) to
zero and solving for the generalized coordinates.  Doing
so results in the following expression.

q K K Q Q

M g B

s a
e

T T

g T

0
1

0

0 0

= −( ) +(
+ + )

− θ

θ δcos
(19)
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The subscript on the generalized coordinate vector is
used to indicate static equilibrium.  The subscript on
the control input is used to denote its static value
(i.e., bias).  

The generalized coordinates can be expressed as the
sum of the static (or equilibrium) part, q0, and a
perturbation part , q̃,

q q q= +0 ˜ (20)

The control input can be expressed as the sum of the
bias or static part, δ0, and the time varying or

dynamic part, δ̃ .

δ δ δ= +0
˜ (21)

Substituting Eqns (20) and (21) into Eqn (18), using
the fact that q0, θT , and δ0 are constant and

eliminating the constant terms by using Eqn (19)
results in the perturbation equations of motion for the
BACT system as shown in Eqn (22).  

˜̇̇

˜̇

( ) ( ) ( ) ( ) ˜̇

˜

q

q

M M K K M M D D

I

q

q
s a s a s a s a











= − − − − − −























− −1 1

0

+ − −











+ − −











+ − −











+ − −











− −

− −

( ) ˜̇̇ ( ) ˜̇

( ) ˜ ( )

M M B M M B

M M B M M E
w

s a s a

s a s a

1
2

1
1

1
0

1

0 0

0 0

δ δ

δ

(22)

While the form of the equations that appear in
Eqn (18) describe the complete motion of the system,
it is the form of the equations of motion presented in
Eqn (22) that are most readily applicable to typical
control system design methods.  Note that even though
Eqn (22) was derived for a single control surface,
extension to multiple control surfaces is straight
forward since there is no inertial coupling between the
various control surfaces.  There is, however,
aerodynamic coupling between the control surfaces due
to their close proximity to each other. The form of the
aerodynamic force expressions allows this coupling to
be approximated within the stability and control
derivative terms.  This can be done by altering the
derivative values to account for control surface biases.
Perturbation effects, however, are ignored in this
approach.

    Numerical Model Parameters

A numerical form of the equations of motion of the
BACT system was obtained by substituting numerical
values for each parameter in the equations of motion
developed above.  Most of the parameter values were
obtained from experimental data but some of the
aerodynamic data was obtained from numerical analysis
using computational aerodynamics.  

The mass and inertia parameters were obtained by
measuring the mass, stiffness, and damping properties
of the various components of the BACT system.  The
geometric parameters (e.g., centers of gravity, shear
center, sensor locations, and aerodynamic reference
quantities) were also obtained directly from
measurement of the BACT and PAPA components.
The mass, stiffness, and damping parameter values
used in the numerical form of the BACT equations of
motion are presented in Table 1.  The center of gravity
and shear center were nearly coincident and located at
the mid-chord point of the wing.

Table 1 - Mass, Stiffness, and Damping Parameters
Symbol Description Value Units

m mass (plunge
generalized mass)

6.08 slug

Iθ pitch inertia
(pitch generalized mass)

2.80 slug-ft2

Kh plunge stiffness 2686 lb/ft

Kθ pitch stiffness 3000 ft-lb

ωh in vacuo plunge frequency 21.01 rad/sec

ωθ in vacuo pitch frequency 32.72 rad/sec

ζh plunge damping ratio 0.0014 -

ζθ pitch damping ratio 0.0010 -

shθ plunge - pitch coupling 0.0142 slug-ft

shδTE
plunge - TE coupling 0.00288 slug-ft

sθδTE
pitch - TE coupling 0.00157 slug-ft2

shδUS
plunge - US coupling 0.00039 slug-ft

sθδUS
pitch - US coupling 9.8e-05 slug-ft2

The static aerodynamic parameters were determined
from experimental data obtained from a previous wind-
tunnel test in which the BACT wing was mounted on
a force and moment balance.  Force and moment data
for various angles of attack and control surface
positions were used to compute most of the stability
and control derivatives using finite differences.

Sufficient experimental data was only available to
quantify the trailing edge control surface and upper-
spoiler aerodynamic characteristics.  Available data for
the lower-spoiler was not complete enough to
characterize its aerodynamics.  In addition, there was
little data to account for aerodynamic coupling between
the spoiler and trailing edge control.  Therefore, the
numerical model is limited to the trailing edge and



8
American Institute of Aeronautics and Astronautics

upper-spoiler surfaces with no aerodynamic coupling
between controls (e.g., spoiler blanking the trailing
edge control).  

The dynamic derivatives (e.g., CMq
 and CLα̇ ) were

obtained from computational aerodynamic analysis.
Analytical values were used because they were
available from models previously generated using
ISAC.  However, the dynamic derivatives associated
with control surface deflection rate were not available
from these models.  The parameters that were not
available were assumed to be zero.

The numerical values for the static and dynamic
stability and control derivatives are presented in
Table 2. These values are only valid at a single Mach
number, 0.77, and a single dynamic pressure, 143 psf.
The moment coefficients are referenced relative to the
shear center that coincides with the mid-chord point of
the wing.  Finally, note  that  the  expression  for  the
generalized aerodynamic forces, Eqn (17), requires the
selection of an angle of attack reference point,   l  (i.e.,
the distance between the shear center and the point at
which the angle of attack of the wing is measured).  A
parametric study found that the best correlation
between the numerical model and experimental data
resulted when the reference point was chosen to be the
aerodynamic center.

Actuator and Turbulence Models
and the Output Equation

The equations of motion alone are not sufficient to
describe the dynamic behavior of the BACT system.
While the 2-DOF system structure is sufficient to
describe the basic aeroelastic properties of the BACT
system, additional elements are necessary to develop a
model suitable for control system design.  

The relative magnitude of the dynamic response is
determined by the nature of the disturbance
environment.  This influences the control activity
required to achieve the desired level of closed-loop
performance.  Therefore, a characterization of the
turbulence environment in the TDT is needed, i.e., a
turbulence model.  The ability of the control surfaces
to produce the desired activity is dependent on the
dynamic response characteristics of the actuators
including bandwidth, position and rate limits, and other
nonlinearities.  Therefore, characterizations of the
actuator dynamics are also needed, i.e., actuator
models.  Finally, a set of measurement signals is
required to provide the basis for feedback control.  An
output equation relating the generalized coordinates to
the measurement variables is therefore required.

Table 2 - Aerodynamic Parameters

Symbol Description Value Units
CL0

lift at zero angle of
attack

0 -

CM0
pitching moment at
zero angle of attack

0 -

CLα lift curve slope 4.584 per rad

CMα moment curve slope 1.490 per rad

CLα̇
plunge damping due to

angle-of-attack rate
-3.1064 per rad

CLq
plunge damping due to

pitch rate
2.5625 per rad

CMα̇
pitch damping due to
angle-of-attack rate

-2.6505 per rad

CMq pitch damping due to
pitch rate

-0.4035 per rad

CL
TEδ

TE lift effectiveness 0.63 per rad

CL
TEδ̇

TE rate lift
effectiveness

0 per rad

CM
TEδ TE moment

effectiveness
-0.0246 per rad

CM
TEδ̇

TE rate moment
effectiveness

0 per rad

CL
USδ US lift effectiveness 0.22 per rad

CL
USδ̇

US rate lift
effectiveness

0 per rad

CM
USδ US moment

effectiveness
0.0573 per rad

CM
USδ̇

US rate moment
effectiveness

0 per rad

  l distance between shear
center and aerodynamic

center

-0.175 %c

S planform area 3.55 ft2

c mean aerodynamic
chord

1.33 ft

It is the combination of the actuator models, the
turbulence model, output equation, and the aeroelastic
equations of motion that will determine the degree to
which a control system will be able to achieve a
desired level of performance and robustness.

    Actuator Models

Actuator models of the BACT wind-tunnel model
were obtained from experimental data using a simple
parameter estimation process.[11]  The process selected
the parameters of the second order actuator model
shown in Eqn (23) to minimize the frequency response
error over the frequency range of interest.
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δ
δ

ω
ζω ω

( )

( )

s

s

k

s sc
=

+ +

2

2 22
(23)

Here k is a gain, and ω  and ζ are frequency and
damping, respectively.  The parameter values
resulting from the parameter estimation process are
presented in Table 3.  

Table 3 - BACT Actuator Model Parameters

Symbol Description Value Units
kTE TE actuator gain 1.02 deg/deg

ζTE TE damping ratio 0.56 -

ωTE TE frequency 165.3 rad/sec

kUS US actuator gain 1.16 deg/deg

ζUS US damping ratio 0.85 -

ωUS US frequency 164.0 rad/sec

kLS LS actuator gain 1.09 deg/deg

ζLS LS damping ratio 0.76 -

ωLS LS frequency 168.4 rad/sec

    Turbulence Model

A model of the turbulence environment within the
TDT was developed using power spectrum data from
reference 12.  The model structure is that of a Dryden
spectrum with the parameters adjusted to approximate
the desired power spectral density.  Equation (24)
shows the form of the turbulence model and Table 4
presents a range of values for the turbulence model
parameters.

w s

s

s

s s

g

g

( )

( )η
π αβ

γ

π
β

π
γ

π
γ

=

+










+ +










2

2

4 42
2

(24)

where β β π
= 



p

tL

V

2 2
 and γ γ π

= 



p

tL

V

2 2
.  

Note that the parameter values are based on data
collected in an air medium, not the medium in which
the BACT was tested (i.e., R-12) and so the reference

Table 4 - TDT Turbulence Model Parameters

Reference Speed (fps)

Symbol 1 0 0 2 0 0 3 0 0 4 0 0
α 0.01 0.025 0.007 0.082
βp 0.477 0.475 0.521 0.667

γp 0.546 0.464 0.497 0.533

Lt 3.261 3.71 3.391 4.163

speed, V , corresponds to a different Mach number.
No data at the appropriate operating conditions is
available.  A reference speed close to the airspeed
associated with a particular test condition was used for
analysis and design purposes.

    Output Equation

The BACT system has four accelerometers, one
mounted in each corner of the rectangular wing.  These
accelerometers sense vertical acceleration measured in
g’s, positive up (opposite to the sign convention for
plunge, h).  The acceleration at any point on the
BACT wing, excluding control surfaces, has two
components as shown in Eqn (25).

˙̇ ( )
˙̇ ˙̇

z x
h d

g
=

− +( )θ
(25)

where h and θ are the generalized coordinates, d  is the
chordwise distance from the reference point to the
shear center, and g is the gravitational acceleration.  
Table 5 presents the chordwise distance (positive aft)
between the shear center and the accelerometer for
each of the four accelerometers -- leading edge inboard
(LEI), leading edge outboard (LEO), trailing edge
inboard (TEI), and trailing edge outboard (TEO).

Table 5 - Accelerometer Locations

Accelerometer
Location

dLEI dLEO dTEI dTEO

Distance (ft) -0.599 -0.599 0.433 0.420

All the components described above were combined
to form the complete numerical model of the BACT
system.  The following section addresses a variety of
analyses that were performed to assess the accuracy and
validity of the model.

Validation of Numerical Model

There are many ways to assess various aspects of
the validity of the BACT numerical model.  In this
section a few comparisons are made between the
properties of the numerical model and the actual BACT
wind-tunnel model.  These assessments can be broken
down into two categories -- static properties and
dynamic properties.  The static properties assess the
characteristics of the equilibrium solutions.  The
dynamic properties assess the key response
characteristics of the system in the context of flutter
behavior and control system design.

    Static Properties

The equilibrium position (pitch and plunge) of the
BACT system depends on the turntable angle and wind-
tunnel operating conditions and represents a balance
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between the elastic and aerodynamic forces acting on
the wing.  Good agreement between the equilibrium
position of the wind-tunnel model and the equilibrium
solution of the numerical model would indicate that the
stiffness (structural and aerodynamic) and control
surface effectiveness properties are well modeled.

Two variables that were recorded during the wind-
tunnel tests are turntable angle and pitch angle (plunge
position was not measured).  In addition, the test
conditions (i.e., Mach number, dynamic pressure, and
control surface positions) were recorded.  Using the
later quantities in Eqn (19), one can determine the
equilibrium pitch and plunge position of the BACT
system for comparison with experiment.

Table 6 presents the computed and measured pitch
angle for a small representative set of test conditions.
The error in equilibrium pitch angle is less than 5
percent for all but one point.  In addition, the trends are
consistent; increasing the turntable angle increases the
pitch angle, deflecting the upper-spoiler decreases the
pitch angle, and deflecting the trailing edge control
downward decreases the pitch angle.  

The size of the pitch angle increments due to
turntable angle and spoiler deflection are also very
similar.  The main discrepancy is in the pitch angle
increment due to trailing edge control deflection.  The
pitch angle change due to trailing edge control from the
experimental data is five times higher than from the
numerical model.

    Dynamic Properties

A major concern in using the numerical model for
control system design is the ability of the model to
accurately represent the transition to flutter including
the frequency and dynamic pressure of the flutter onset.
Another concern is the fidelity of the model from a
frequency response perspective because of the
relationship between the frequency response and the
structure of the control system.   Finally, the level of
response due to turbulence is an important issue since

the maximum level of control activity depends directly
on the level of response of the wind-tunnel model to
turbulence.  Each of these properties will be reviewed
and compared with experimental data (and numerical
models generated with ISAC where possible) to assess
the validity of the numerical model.

    Flutter Properties

The BACT wind-tunnel model experienced flutter in
the TDT at a dynamic pressure of approximately 148
psf at a Mach number of 0.77.  The flutter dynamic
pressure for the numerical model is 150.8 psf, an
difference of 1.9 percent.  ISAC generated models
indicate flutter occurs between 156 and 163 psf.

The flutter frequency of the BACT wind-tunnel
model is approximately 4 hertz.  At the same operating
condition the flutter frequency of the numerical model
is 4.16 hertz, a 4.0 percent difference.  ISAC generated
models indicate the flutter frequency to be
approximately 4.22 hertz.

In terms of the flutter dynamic pressure and
frequency at the Mach number for which aerodynamic
data was available, the numerical model of the BACT
system gives excellent results.

    Transfer Function Comparisons

One of the most important measures of model
fidelity for control system design is the frequency
response.  In order to effectively design a control
system to stabilize a flutter mode the design model
must accurately characterize the dynamic behavior of
the aeroelastic system over a fairly wide range of
dynamic pressures from stability to neutral stability to
instability.

Figures 6 and 7 show comparisons between the
frequency responses for the numerical model and the
actual wind-tunnel model. The operating condition
corresponds to subsonic Mach number and a dynamic
pressure of 125 psf, well below flutter.  In Figure 6

Table 6 - Static Equilibrium Position Comparison

Mach
Number

Dynamic
Pressure (psf)

θT
(deg)

δTE
(deg)

δUS
(deg)

θexp
(deg)

θmodel
(deg)

∆θ
(%)

.65 112 1.6 0 0 2.1 2.17 3.33

.65 115 1.6 0 - 1 0 2.0 2.05 2.50
∆θ (δUS) 0.1 0.12

.70 126 1.6 0 0 2.4 2.28 -5.00

.70 126 1.6 1 0 0 2.0 2.20 10.0
∆θ (δTE) 0.4 0.08

.77 120 1 . 4 0 0 2.0 1.95 -2.50

.77 120 4 . 5 0 0 6.0 6.27 4.50
∆θ (θT) -4.0 -4.32
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the output is the trailing edge accelerometer and the
input is the trailing-edge control.  In Figure 7 the
output is the trailing-edge accelerometer and the input
is the upper spoiler control.  An ISAC-based model is
also presented in Figure 6 for comparison.   Recall
that ISAC cannot model spoilers and so no ISAC
comparison can be made in Figure 7.  The frequency
response comparisons for the other accelerometers are
comparable to those shown here.

There is excellent correlation between the
experimentally obtained frequency responses and those
of the numerical model.  The model clearly captures
the key aspects of the dynamic response of the BACT
system at the subcritical dynamic pressure of 125 psf.
There are, however, slight discrepancies in the
frequency of the magnitude peak near 3.5 hertz and in
the phase characteristics of both responses.

    Open-Loop RMS Accelerations

It is important for the numerical model to accurately
characterize the response of the system to disturbances
since disturbance response determines the control
activity required to achieve the desired level of closed-
loop performance.  The disturbance source for the
BACT system is wind-tunnel turbulence.  One measure
of the degree to which the numerical model
characterizes the turbulence is rms acceleration.  

Table 7 presents a comparison of the rms trailing
edge inboard accelerations at two dynamic pressures.
The comparison is based on normalizing the dynamic
pressure by the associated flutter dynamic pressure, qf.

Normalization is needed because of the differences in
the flutter dynamic pressure for the experimental data
and the numerical model. The reference speed used to
scale the turbulence model is 400 fps and is consistent
with the speed of the flow in the wind-tunnel.  

Note that there is a Mach number mismatch
between the experimental data and the model-based data
since the aerodynamic parameter values in the
numerical model are based on data collected at Mach
0.77 and the experimental data was obtained for Mach
numbers of 0.63 and 0.71, respectively.  The good
agreement in the response level implies that the
numerical model can be used to assess rms response.

    Comments

Based on the accuracy of the flutter properties, the
subcritical frequency responses, and rms disturbance
response, it is reasonable to expect the model to
accurately characterize the dynamic response of the
BACT system over a wide range of operating
conditions and is appropriate for control system design.
Nevertheless, the dynamic behavior of the numerical
model near flutter has not been directly verified and
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Figure 6 - Frequency response comparison for trailing-
edge inboard accelerometer due to trailing edge control:

q = 125 psf.
(solid - exp, dash - model, dot - ISAC)
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Figure 7 - Frequency response comparison for trailing-
edge inboard accelerometer due to upper spoiler control:

q = 125 psf.
 (solid - exp, dash - model)

Table 7 - Comparison of RMS Trailing-Edge
Acceleration

RMS Trailing Edge
Acceleration (g)

qnorm (psf) Experiment Model % Error

0.75*qf 0.0207 0.0188 -9.2

0.90*qf 0.0340 0.0350 2.9

could deviate from the actual system despite the
similarities presented above.

In addition, the discrepancies identified above should
be taken into account during control system design and
dynamic analysis.  In particular, the static analysis
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supports the possibility that the pitch effectiveness of
the trailing edge control surface in the numerical model
may be somewhat low.  There are also slight peak
frequency and phase differences between the numerical
model and the experimental data in the frequency
response plots that could represent uncertainty in pole
and zero locations of the numerical model.

Concluding Remarks

The dynamic model of the Benchmark Active
Control Technology (BACT) wind-tunnel model
presented herein has many advantages over a purely
numerically derived model.  It is analytical and
parametric in nature and therefore lends itself to
sensitivity and uncertainty analysis.  Since the
aerodynamic effects are represented in derivative form
experimental data can readily be substituted for
analysis-based data.  A major advantage of the
modeling approach is that it allows experimental
stability and control derivative data to be used to model
spoiler effects not possible with the traditional
modeling method.  The modular form of the model
also allows various components of the model to be
modified or replaced.  This is very useful in cases
where actuator models and turbulence models are
modified or updated.

A Matlab®/Simulink® implementation of the wind-
tunnel model, actuator models, turbulence model, and
digital controller effects has been developed for the
purpose of evaluating and analyzing the dynamic
behavior of the BACT system.  It has been used by
several researchers to assist in the design and analysis
of flutter suppression controllers.  A variety of
classical, H∞, µ-synthesis, neural network, and

adaptive controllers have been designed using the
numerical model and have been successfully tested in
the Langley Transonic Dynamics Tunnel.  

The BACT model and test data are also being
developed as a case study package for educational use.
The relatively simple structure of the BACT system
coupled with the availability of extensive and detailed
experimental data make the BACT an excellent
candidate for the study of dynamics and control of
aeroelastic systems.
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